..... N

UNCLASSIFIED "T"’ FVIE Cmm COPY ~ - FOR REPRODUCTION PURPOSES @ o
SECUMTY CCASSIFICATION OF THIS PAGE

OCUMENTATION PAGE

Wmie EESE CTEE 10. RESTRICTIVE MARKINGS
2. SECURITY g NOV 2 31988

3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

AD._ AZOZ 2 5 4 W ‘s. MONITORING ORGANIZATION REPORT NUMBER(S)

ARO 23087.12-EL

e
68. NAME OF PERFORMITNG UNUANILA | nuTe 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Uni ity of Pennsylvania (i applicable)
aiversity y U. S. Army Research Office
6c. ADDRESS (City, State, and Z¥P Code) - 7b. ADORESS (City, State, and 2IP Code)
Dept. of Electrical Engineering P. 0. Box 12211
Philadelphia, Pa 19104 Research Triangle Park, NC 27709-2211
82. NAME OF FUNDING / SPONSORING 8b. OFFICE sm;m 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION 0f applicable
U. S. Army Research Office DAAG29-85-K-0247
8ic. ADDRESS (City, State, and 2iP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
P. 0. Box 12211 ELEMENT NO. [ NO. NO. ACCESSION NO.

Research Triangle Park, NC 27709-2211

7. TITLE (inchude W)

Research in Data Compression for Microwave Imagery and Its Effect Upon Image Quality

12. PERSONAL AUTHOR(S)

T Stanislav Kesler
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
L_KEinal FROM T0 8 Nov 11, 1988 48

16. SUPPLEMENTARY NOTA
§. SUPPLEMEN NOTATION The view, opinions and/or findings contained in this report are those

of the authqr(s) and should not Ibe consts:gd 821 an afficial Digartment of the Army position,

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP ata Compression, Microwave Imagery, Image Quality, oy
Optical Quantizer Design, T e .

s e / ‘

k 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In microvave 1imaging, aperture data are digitized, while
system performance is determined by the quality of the image,
vhich 1is wusually a Fourier Transform of the aperture data. This
research develops a methodology for finding a quantizer in'the
aperture domain which optimizes an image plane quality critertion.

For amplitude-phase quantization of complex data, a novel
optimality criterion is posed which leads to a nev and simpler
optimal quantizer design. __ / "

o .
[P LS.t

s

.
R

20. DISTRISUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

O uncLassiFieDAUNUMITED [ SAME AS RPT.  [J OTIC USERS
h_—_—__"zz.‘ NAME OF RESPONSISLE INDIVIDUAL — |22b. TELEPHONE (inciude Area Code) | 22¢. OFFICE SYMBOL

- _
DD FORM 1473, 8a MAR 83 APR edition may bo used until exhausted. ECURI W THIS PAGE
All other editions are obsolete. UNCLASSIFIED

M

o




I T T T T~~~

UNCLASSIFIED ) , ’
SECUMTY CLASSIFICATION OF THIS PASE

TTET

The effectiveness of the theory is evaluated with computer
< simulation and on experimental data. The theory explains why
ig fever bits are satisfactory 1in reconstructed image, and it
provides an analytical basis and a rule of thumb for bit
allocation betwveen amplitude and phase.

The theory Iimposes substantially no constraints upon the
distributions of amplitude and phase in the microvave data. 1t is
also shown that the optimum quantization design derived from the
theory 1is nearly scene-independent and may achleve real-time
performance.

Finally, the theory provides useful guldellnes to analyze the
nature of distortion due to data compresstion.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Jr**ﬂ---------------l----------------J




—

ARo 23087./3-€C

UP-VFRC-15-88 Novermber 11, 1988

RESEARCH IN DATA COMPRESSION FOR MICROWAVE IMAGERY

AND ITS EFFECT UPON IMAGE QUALITY

Zhongjie Liang
Bernard Steinberg

Stanislav Kesler

FINAL REPORT
CONTRACT NO. DAAG29-85-K-0247

VYalley Forge Research Center
University of Pennsylvania
The Moore School of Electrical Engineering
Philadelphia, Pennsylvania 19104

88 11°7 70

8.




PREFACE

Research under the contract has been conducted to the subject
of data compression for microwvave {imagery. A theory of Bit
Compression has been developed for compressing the aperture data
in a microwave antenna array. Two papers have been sent to IEEE
for publication. The first paper: "Optimum Data Quantization in
Microwave 1Imagery and 1Its Effect Upon Image Quality" is to be
published in IEEE Transactions on Acoustics Speech Signal
Processing of December 1988, and the second paper:"An Exact
Solution of the Analytic Equation of Image Quality from Optimum
Quantization of Microwave Imaging Data" is currently under review.

In this report, the objective of this research is reviewed,
the major procedure of theoretical development is demonstrated and
the important results are discussed.

The mathematical derivation will not be shown in every detail
in the report and could be found in the papers,
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ABSTRACT

In microwvave 1imaging, aperture data are digitized, while
system performance 1is determined by the quality of the image,
which s usually a Fourier Transform of the aperture data. This
research develops a methodology ¢£for finding a quantizer jin-the
aperture domain which optimizes an image plane quallty criterion.

For amplitude-phase quantization of complex data, a novel
optimality criterion 1is posed which leads to a new and simpler
optimal quantizer design.

The effectiveness of the theory iIs evaluated with computer
simulation and on experimental data. The theory explains why
fewver bits are satisfactory 1in reconstructed 1image, and it
provides an analytical basis and a rule of thumb for bit
allocation between amplitude and phase.

The theory 1imposes substantially no constraints upon the
distributions of amplitude and phase in the microwave data. It is
also shown that the optimum quantization design derived from the
theory 1is nearly scene-independent and may achleve real-time
performance.

Finally, the theory provides useful guidelines to analyze the
nature of distortion due to data compression.

vi




1. INTRODUCTION

A high resolution microwave imaging system must process huge
amounts of data. Because of the limitations on processing time,
memory space and the cost of processor hardware, it is important
to develop techniques to reduce the data handling requirement.

The data handling rate denoted by R is the product of the
number of the samples denoted by N (which is the number of antenna
array elements), the bandwidth of the signal denoted by B and the
bit per sample denoted by b (bit 1is used as the information
carrying unit). Namely,

R = NBb (bit/second)

High cross-range resolution requires large number of elements
and high range resolution requires large bandwidth. Therefore,
for high 1resolution imaging system, the problem of reducing data
handling requirement is addressed to bit compression which is the
minimization of the number of bits per sample used to represent
the image.

Techniques of this sort are usually referred to a more
general term as data compression{l]. Unfortunately, most existing
data compression techniques are found not to be useful for our
application in microwave imaging because

1) In applying these technigues, both the input and the
output of the compression processor are in the same domain. For
microwave imaging, the data need to be compressed are the aperture
data which are the complex samples of the electric field taken by
the receiving antenna, which is usually a phased array [2]. The
image is related to the aperture data by a diffraction integral of
physical optics ({3), which 1is well approximated by a Fourlier
transform when the distance from source to antenna is large enough
(41. In other words, the expected input and output of a
compression processor are in different domains related by an
integral transformation. It is the nature of integral
transformation that any point 1in the transform domain does not

correspond to a point in the source domain, but to the entire




source; As a result, the image quality criteria which govern the
data compression alqorithms are no longer valiad.

2) The performance of data compression technique is measured
by the capability of compression (e.qg. compression ratio which is
the ratio of the number of bits per pixel used for coding the
data-compressed image to the number of bits per pixel used for
coding the original image ). However, from image fidelity point
of view, the higher the compressicn is, the larger the distortion
is. Therefore, 1in order to turn these techniques into a useful
application 1in 1image processing, one requires not an arbitrary
high compression scheme but the best trade off between the image
fidelity and the degree of compression for gliven systenm
constraint. In other words, one needs to know how the image
quality is related to the controlled parameters of the compression
processor, so that for given image guality requirement, one can
determine what minimum number of bits that the data can be
compressed to or, for gliven number of bits limited by the system,
wvhat quality the constructed image can achieve. Unfortunately,
such theory 1s found not to be available In most existing
techniques.

3) Even 1f it is possible to develop these techniques to be
adaptable to the microwave imaging system (meaning that the flirst
tvo problems are resolved), thelr performances are still not
justified 1in considering the effect of low correlated source of
microwave 1image and the additional cost and increas!ng complexity
of hardware and software in applying these techniques.

The research objective was to develop a theory of Bit
Compression for the high resolution microwave imaging system to
determine the minimum number of bits required of the quantized
signal for the image to achieve any given quality or, conversely,
wvhat quality of image can be obtained for any glven number of bits
that the quantized signal retains. The theory will be developed
by 1) deriving an optimum qguantization scheme vhich maximize the
image quality over. the entire system for given number of quantized
level; 2) deriving a theoretically exact and physically solvable
analytic relation between the number of bits per sample of the




quantized signal and the quality measure
analyzing the effects due to data compression.
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2. THE THEORY

2~1 The System Model

A typical microvave imaging system model is shown in Figure 1
{5}.

S(r,?) 1is a source distribution function which is actually a
complex reflectivity function due to illumination from a distant
microwave transmitter. The electric field e(x) induced in the
aperture is related to S(r,2) by a diffraction integral. An angle
2> Is measured from the normal to the aperture of the linear array.
By replacing © with u=sin(s), the integral transformation , for a
far-field source or a near-field source with a well focused
antenna array, is reduced to Fourier transform where u becomes the
canonically conjugate varlable to x/x in the Fourier relation [4).

The source distribution 8(r,%) can be reduced to one
dimenslional function sk(u) because the range dimension in radar
can be <considered as a discrete set of range bins indexed by k
(s1.

w(x) is the aperture weighting function. The current
distribution £(x) in the aperture is the product of e(x) and w(x).
With the exception of modern superresolution techniques [6], the
image 1is generally the magnitude of the Fourler transform of the
current distribution (51, which can be written as If = | F(£) |
where F(-) denotes Fourier transform.

When the data compression s Iintroduced, the compressed
aperture data becomes g=D[f}] where D is the compression operator.
The 1mage reconstructed from compressed data then becomes the
magnitude of the Fourier transform of g denoted by Ig= [F(g)l.

The selections of the weighting function w{x) will not change
the nature of image distortion due to data compression because the
reference 1image |is If in wvhich the effect of w(x) has been
included.

Finally, the problem becomes that for a given image gquality
requirement of Ig,-find a Bit Compression technique to compress £,
such that the number of bits of g can be minimized.
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Figure 1. Microwave Imaging System Model




2.2 The Signal Model
The microwave image data can be considered as a random

process. By definition, a random process is an ensemble of time
functions where the time function is random variable for a glven
instant of time [7].

The random process model for microwave imaging is illustrated
in Figure 2. For a given time instant which corresponds to one
snap shot, the image data is the spatial sample of the radiation
source for one range bin, therefore the time functions are the
receiving signals 1in the aperture and the ensemble is defined to
include all array elements.

The process is assumed to be ergodic because Iimages
corresponding to different snap shot are assumed to be
uncorrelated.

The process 1is not stationary 1in general. Howvever, the
statistical study of data distributions shows that if scenes to be
imaged are divided 1into different groups according to different
categories of objects (e.q. residence, industrial,
airplane,...,etc) then the process can be considered as statlionary
vithin a group provided that their data distributions are close
enough and the parameters of the processor are not sensitive to
variations of the data distributlions in the group.

Therefore, it will be assumed that both the stationarity and
the ergodlicity are held for the model.

2.3 Basic Definitlions
Image Fideljty Measure: Define the normalized =zero-lag

correlation coefficient &~ between the original and the distorted

image as a measure of image quality:

Iflg

(2.1)

o
"

IfrmsIgrms

vhere Ifdenotes the original 1{image and Igdenotes the image
obtained from the distorted (i.e.,quantized) input data. Both
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Figure 2. The Signal Model




Ifand Igare functions of the image coordinates. The overbar means
average over all plcture elements in the images and rms denotes
root mean square.

In most image processing applications, the mean square error
€ 1s used to measure the image fldelity (l1). It has been shown
[S5)] that £ and P are equivalent if £ is normalized and if the
distorted signal g is scaled such that its enerqy and the energy
of the original signal £ are egqual. However, these two major
differences do make the correlation coefficient metric more useful
in our application than the conventional mean square error metric.
Because of the scaling property, the comparison between the proper
image and the distorted image is made under the same energy base,
so that only the unsimilarity will be detected £from the
measurement, Because of the normalization property, the
sensitivity of the image quality measure to the varliation of data
distribution for dilfferent scene will be significantly reduced,
and a bounded relative error scale will usually make more sense
than an unbounded absolute error scale ¢,

The selection of correlation coefficient metric become
significant in the optimum quantization procedure wvhere it leads
to independent quantizer design while the mean square error metrlic
lead to dependence betwveen amplitude quantizer and phase
quantlizer,

Information Measure: Define entropy H to measure the
information content of the quantized slignals;

Hz=-

U 5 -

p21log Pyy (2.2)

i=1

wvhere Z=A representing ampllitude, 2=% representing phase and pZiis
the probability that the signal =z takes a value in the ith
quantization region

2.4 Aperture Domaln Formulation
We assume that the source or scene being imaged 1is in the
far fleld. # can then be expressed in the aperture domain by




using the Fourier transform relationship between the source
distribution and the electric field induced in the aperture, and
Parseval's Theorem eguating energies in the two Fourier domains
(5. In the following derivation, £ consists of the measured
samples of the electric field in the aperture and g are its values
after quantization. f and g are functions of the aperture
coordinates, I£=|F(f)l and Ig=lF(g)l. F(-) denotes Fourier
Transform and * denotes the complex conjugate.
From (2.1),

If Ig
P o=
Ifrmslgrms
IF(£)1 IF(g)l
L F(£) ]rmg F(q) lrms
Because
2 |reey veal
IF(E)L IF(g)l = F(f) F(qg)
ve write
IF(E)1 IF(g)] = K |F(f) F(q?l

wvhere K greater than or equal to 1. Then

F(f) Flq)
P =K
(F(E)]___(F(g)]___
x
F(£) Flg) l
K

tre)f  1ree)f 1Y%

Parseval's theorem implies that

. A




F(£) Flg) \ lf g"

ureerf  redf 1% e T g £

Therefore
x

| fgq fa)
P = K . i = K PO (2.3)

£ .9

rms ‘rns ,

iz
The analyslis is performed in polar coordinates. Let f=RAe

jz!

and g=A'e . Reference [5] shows phase and amplitude to be
independent when the scene being imaged consists of many sources
and none of the sources dominates all the rest. Assuming this

condition, P, Can be expressed as

A A

Py = eJ(EE")
L
ArnsPrms
- Py Ps (2.4)
vhere
Pa =2 A BApe Brns (2.4a)
P = | exp (J(Z-F")) (2.4b)

z

wvhere the overbar means ensemble average over all array element
vhich could be replaced by the expectation value because the
number of array elements is very large.

2.5 Optimum Quantizer

Techniques of optimum gquantization wusually deal with real
input sequences. Examples are the early papers by Max (8] and
Paez and Glisson-{9]). 1In high resolution microwave imaging, the
aperture data to be quantized are complex random varlables. In
this thesis, an optimum quantization scheme for complex data in

10




polar coordinates is introduced . Gallagher (10] also dealt with
optimum quantization of complex data in polar coordinates. There
are tvo main differences between these two papers and this work.
First, in (8]1,(9) and (10), only the quantizer was optimized,
vhereas in our procedure, the optimization is carried out gover the
entire jimaging system (which includes the transform from source
distribution to electric €£ield {n the aperture and the inverse
transform from quantizer output to image). ‘
Second, the optimization procedure in (10) 1leads "to an
amplitude quantization scheme that 1is dependent upon the phase

quantization. In our procedure, which maximizes the image
correlation coefficient @ (2.1), the amplitude and phase guantizer
are independent . This 1is significant because 1) it gives the

complete freedom to achieve the most efficent bit allocation
betwveen amplitude quantizer and phase quantizer; 2) it makes it
possible to express the total entropy of the gquantized signal with
the individual entropy measurement from the two quantizers' output
without involving conditional entropy (7] which 1is usually
difficult to evaluate; and 3) it leads to a similar optimum
conditions both for amplitude gquantizer and phase quantlizer as
those developed for real signal by Max, so that one is able to use
all resources and facilities developed for Max quantizer, such as
Bruce's algorithm (11) and Sharma‘'s algorithm [12], to calculate
the optimum settings.

The conditions of optimum quantization will be obtained by
maximizing the image correlation coefficient P,

It can be found later that the conditions which maximize ~

[m)

|
also maximize K. Therefore, the image correlation coefficient ~

will be maximized as the lower bound correlation coefficient Pa is
maximized.

[»] A

P, 1s maximized as each of PA and P§ is maximized individually.

Because r_ = P P§ , and because Fa and P, are independent,

2.5.1 Optimum Amplitude Quantizer
Let NA be the number of quantized levels, a{ be the ith
output 1level of the quantizer, the value assigned to a sample

11




falling in the interval [ a;_q.3y ), and a; be the endpoint of
input range of the guantizer with 1=1'2""'NA(2 replaced by a in
Figure 3).

Define ;1= E( A ) a;.1 £ A< a;) vwith E(-) representing
expectation value, Pai™ Pr( a; < A< ai) vith Pr(-) standing
for probability, .

The terms in (2.4a) may be calculated:

=

Aa = zteria, <A <ap) B AA'la, | <A <a)
i
Na
= '
% Ppg3f E( Al a , < A <ay)
N
= oA iy
L YR
and
At = r 2P BA'E A, . <A < apY?
rms ? Pai i-1 = 1
N 172
2
R b NETES
1
The amplitude correlation coefflclent is
N
A -
Z'p,,a:a
o j At (2.5)
A” N, z /2
C T pAiai ] Arms

It can be shown that P, is maximized if a' and a; satisfy

A i
aj= a, 1=1,2,...,N, (2.6a)
$|+ ;|+1
a1= 1=1'2’00-NA-1 (Z-Gb)
2
12
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2.5.2 Optimum Phase Quantizer

Let N.§ be the number of quantized levels, ¢i be the output
level of the quantizer, the value assigned to a sample falling
vithin the interval [¢1_1,¢1), and ¢1 be the endpoint of the
input range of the quantizer with 1=1,2,...,N§-1(z replaced by ¢
in Fligure 3).

Define $1= EC 2 | 4,4, ¢ 2 < 4, ) E(-) representing

+

expectation value, and Pxi Pr( < £ < ¢1 ) with Pr(-)

i-1
standing for probability.

The phase correlation coefficient (2.4b) becomes

P§= l expli(Z2-3')]

N
= |T§

I p§1E{ expli(Z-2')]11 ¢

RS- RE N1

It can be shown, for uniformly distributed phase, that P§ is
maximized if *i and ¢i satisfy:

"i = 'Pl 1=1’2'o--’N§ (Z.SC)
—i i+l
't'1= 2 i=1'2’.lQ’N§-1 (Z-Sd)

Equations (2.6a)-(2.6d) are the design equations of the
optimum quantizer. From (2.6), it is clear that the dependence
between the amplitude quantizer and the phase gquantizer in
Gallagher's design vanishes. The equations (2.6a)-(2.6d) say that
in the optimum design of the two quantizers, the ith output level
equals the conditional mean of the input data in the ith range and
the endpoint of the ith range equals the arithmetic mean of tvo
adjacent output levels. These statements are true for arbitrary
amplitude distribution, for wuniform phase distribution and for
amplitude and phase being independent.

14




2.6 The Transfer Index

From (2.1), one can see that f£4 has the same form as F except
that it is defined as the magnitude of complex gquantity.
Therefore we can consider K as a transfer index which transfers
the 1Image correlation coefficlent from the aperture domalin into
the 1image domain. The expression for K can be derived in the
following procedure.

From (2.1),

Te Ig IF(E)1 IF(g) I
[=J ] =
Ifrmslgrms [ F(£) ]rms[ F(g) ]rms
But from (2.3)
£q" F(£) F(q) ‘
po= =
fzmsgrms [F(f)lrms[F(g)ltms

Cc l IF(f)lexp(j¢f)lF(g)lexp(-j¢g) !
vhere
-1

C=((F(E) I, [ F(g) 1.}

Independence between phase and amplitude in the image domain (5]
implies that

Pa= C IF(£)) IF(g)I Iexp(3(¢£-¢g))

=)

= lexp(j(¢f-¢g))

which,by definition, gives

—~1
K = Iexb(ﬂ(¢£-¢g))l

15




Let Ai denotes the measured amplitude in the ith element, §1
denotes the measured phase in the ith element, and " ' "
represents values after distortion. After much mathematics, it is
found that

K '= mzvl
vhexe

« = tan '8
and

o (Z Aisin¢1)(2 Aicos?i)-(z AlcosWL)(Z Aisin*i)

(Z Aicoswl)(i Aicos*i)+(2 Aisinwl)(E Aisin?i)
(2.7)

where ¢1= §1- "y with Ylbeing the Fourier kernel, and the

sumnation is taken over all elements (i from 1 to N).

fa _1N

=N zZV
i

By defining v B can be expressed as

1’

( A sin¥ )( A'cos¥')-( A cos¥ )( A'siny')
E = (2.8)
( A cos¥ )( A'cos¥')+( A sin¥ )( A'sint')

Because the number of elements is very 1large, V can be
approximated by the expectation value of X . This Implies that
the transfer index K 1s uniquely specified for given distribution
of aperture data and the quantizer parameters as the number of
elements goes to very large.

Thils property shows that the exact solution of Iimage
correlation coefficlient exist if the distribution of aperture data
are glven. It also allow us to obtain K by using computer-
simulated 1images through the relation K=r/F, vith P obtained from
(2.1) and Pa obtained from (2.4). This method is more accurate
than calculating (2.7) because of the tremendously reducing number
of mathematical procedures that are Iinvolved; the result is

smaller accumulation of errors in the calculation.

16




In section 2.5, it wvas shovn that P is maximized when the
optimum quantization conditions are applied. A numerical study of
(2.7) shows the same result for K, namely that K is maximized when
the optimum quantization conditions are applied. Furthermore it
vas found that K is insensitive to changes in the output levels
provided that the maximum deviation from the optimum set is less
than 10 per cent.

Some values of the estimate of K are listed in Table 1.

A numerical study of K based on (2.7), and the results of
experimental testing discloses the following additional important
properties of K:

1) Using the estimates of K into the evaluatlion of image
correlation coefficient with experimental data (Tables 5 and 6)
infers that K is insensitive to variations in the distribution of
the complex aperture data. This property is very important in a
practical sense because it indicates that K is relatively scene
free. ‘

2) The transfer index K is more sensitive to phase distortion
than to amplitude distortion. As Table 1 shows, K is closer to 1
for amplitude-distortion-only than for phase distortion.

3) The same table shows that when the phase distortion is
significant (e.g., 1-2 bits of phase), K is determined almost
entirely by the phase gquantizer.

4) When the phase distortion is insignificant (e.g., 3 or
more bits of phase), K 1is determined almost entirely by the

amplitude gquantizer.

2.7 The Analytic Equations
By applying the optimum condition (2.6) to (2.4) and
summarizing the results from previous sections we obtain the

analytic equations of image correlation:
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______ Ay OIts) .
? |
1 2 -3 I
f
R R2 |
H, i 0 0.7C 0.90 0.91 0.95 {
~_1
(bits) | 1 ¢.70 0.90 0.95 0.97 : K
: 2 0.70 0.90 0.97 0.99 |
|
| |
L .

-l .
Table 1, Estimate of K . The ranges Rl and R2 defined by

<.< <.< e o
R1:(0.6 = p, = 0.9) and R2:(0.9 « p, = 1.0) where Py" AlArps
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pA = arms(ai)/hrms (2.9a)
- NA ap /2
vhere a ns” 8 131 Paidy ]
-H:§
P§= sinc(mm 2 ) (2.9b)
N,
Hz(zi) = - i pzt(zi) log p21(zi)

where Z=A representing amplitude and Z=% representing phase.
The Iindependence between the amplitude quantizer and phase

quantizer implies
H=H, + H

A =z

K Is determined by

-1
exp(jm)'

K =
vhere
o o= tan_lﬁ
and
( A sin¥ )( A'cos¥')~( A cos%¥ }( A'siny')
£ =

{ A cos¥ )( A'cos¥')+{( A sin¥ )( A'sin%')

For given system constraints, this set of equations relates
the optimum image gquality to the minimum number of bits per sample
of the quantized signal through the optimum endpoints setting (zi}

and optimum output levels (zi}

Table 2 1lists some results of exact 1image correlation
coefficient F» wversus the number of bits per sample in amplitude
and phase for Rayleigh distributed amplitude and uniformly
distributed phase which shows that the image quality is well
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Ho(bits)

(bits)

=
He O 0.806
l
l
l
[
|

_____________ 1o
1 2 3 I
0.886 0.949 ;
1 0.873 0.961 0.985 : p=Kp,
2 0.896 0.986 0.990 |
|
A

Table 2. Image Correlation Coefficient vs. the number of

Bits Per Sample: Amplitude and Phase
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preserved for high compressed aperture data (for example, from the
£irst column first row of Table 2, one can see that more than 80%
of the image fidelity 1is achieved for only 1 bit of aperture
data).

As one can observe that both the analytic equations of image
quality and the optimum conditions have no closed-form solution.
They can only be solved numerically by wusing large cbmputer
program. However, in order to study the properties of the theory,
it 1is not alwvays necessary to carry out the general and exact
solutions, Good approximation and simulation wusing typical
distribution are usually more desirable.

2.8 Suboptimum Conditions

It 1is well known that phase carries more information useful
for 1Iimage construction than amplitude. Therefore, a suboptimum
amplitude gquantization schemes could yleld near-optimum results
provided the phase is optimally quantized.

If one replaces the condition of (2.6b) with the conditlion of
setting all Paj to be equal:

for all § (2.10)

then the quantization procedure can be reduced to one dimensional

and Fy Can then be expressed explicitly as the function of HA

1/2
C;(H) 1 (2.11)

vhere
(o]

"
u
[
~
(9

i

Because Clis only a function of HA ' Fa is uniquely specified

by HA'
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It is found by computer calculation of (2.9a) and (2.10) that
PA(2.9a) is almost 1identical to PA(Z.IO) in the sense that the
largest error between them, which appears when NA=2, is less than
0.2%. However, equation (2.10) greatly simplifies the analysis
procedure.

2.9 Simulation

Assuming that the scene to be imaged is in the far field and
consist of many sources (targets) characterized by a’ real
amplitude ni and phase 91 « the electric field induced in the
antenna array is e(x) = & Al exp( jkxu1 + el ). Further assuming
that none of the sources dominates the sum of all the rest which
suggests that all these sources are independently identically
distributed. By the Central Limit Theorem, the quadrature
components of the electric flield are independent Gaussian
processes which 1implies that the amplitude and the phase of the
current distribution f are independent with Rayleigh distributed
amplitude and uniform distributed phase. By using this multiple
targets model (5] and applying the suboptimum condition (2.10), a
closed form solution of lower bound 1mage correlation coefficient
Poin terms of the entropy of quantized signal can be obtained.

To see this, recall equation (2.11)

-H 2
o h W 1/2
Pa= ( 2 = C1 )
vhere
Cy= al/Arms
with
—HA
Ppi= P =2 for all i.

By Noting that the pdf of amplitude is Rayleigh, that is

P, (a) =(a/ )exp(-(a°/20°))

Evaluating the terms in (2.11) gives
m

- . z /2 - 5
A= g a“p,(a) da 42 . 3¢ (2.12)

vhere 7 is the standard deviation of amplitude.
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a
' i
- -1
. a;= E(Ala; ;<A< a, ) =p £ a Pla) da
- 1—1
~ie- ~a/20%)+ (-a_ /20%)
=p ( a,exp( a,/ ) a,_jexp(-a, ,

h +v2ma [Ezf(a, /0)-Exf(a,_,/T)]} (2.13)

vhere Exf(x) 1s the error function of x defined by

X
Erf(x)=(+2m )" ' [ exp(-y°/2) ay
—)

After much mathematics, a,is found to be:

1
a,;=(2 1nl (1-1p)"'13 "/ 120,1,...,N,-1 (2.14)
and
a,.,=z o
Na
Now let
c,=a,/t(m/2) /& (2.15)

and note that

then
-H

c,= 2 { 1nt(1-12 M7hy/m%1=0,1,...,N,-1  (2.16)

A

Substitute (2.15) 1into (2.13) and then substitute the modified

(2.13) and (2.12) into c1 in (2.11). The result is

H
A- A
cl- 2

[&)
[

1/4)—C1exp(—nc1 /4)]

T { 0.5 C LeXP(-TIC

[

i-

-
[

+( Erf(Cl(ﬂ/2)1/2) - Erf(Ci_l(ﬂ/Z)i/ )1}
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(2.17)

vhere 1=1,2,...,Nl-1 , and C

115 determined by (2.16).
A summary of results follows:

Po= PaPz

H = HA+ H§

H p
o -Hy 2 R, 1/2

P.o= [ 2 T C,(H) 1]

A o1 1A
vhere

. HA”- z 2

Cy= 2 "»T { 0.5 1 C,_,exp(-TC, ,/4)-C exp(-TC; /4)]

st Bxe(c (w2 ¥ - Exece v
“Hy 172
¢,= 2 { Inl(1-12 )" 1/m /71=0,1,...,N, -1

pA can be approximately given by

53* 1-expt-(1.ossn§'95+z.173)1

Lastly

Results from carrying out these equations are shown in Table
3, Table 4, Flgure 4 and Fiqure 5. Table 3 lists P, for various
combinations of HA and Hﬁ. Table 4 relates the correlation
coefficient P, to a subjective assessment of image quality (5].
Figure 4 plots PAand pi against the number of amplitude and phase
bits per sample and Figure 5 plots P where the dashed lines are
for constant sums of HA and Hi'

An Important observation drawn from the analytic equations
((2.11)-(2.17)) of lower bound correlation coefficlent 7 is that
Py 1s independent with the statistical properties (mean or
varlance) of the image data and uniquely related to the entroples
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0 0.0000 0.5541 0.7978 0.8636 0.8805 0.85343 0.8858 0.8861

1 0.0000 0.6114 0.8646 ©.9359 0.9542 0.9588 0.9600 0.9603

2 0.0000 0.6272 0.8870 2.9601 0.9789 0.9336 0.9848 0.9851
3 0.0000 0.6330 0.8952 0.9689 0.9879 0.9927 0.9939 0.9942
4 0.0000 0.6352 0.8983 0.9723 0.9913 0.9961 0.9973 0.9976
5 0.0000 0.6350 0.8995 0.9736 0.9926 0.9975 0.9987 0.9990

Table 3. p, vs number of bits per sample: amplitude and phase

I
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Pe Image
0.6 often recognizable .
0.8 often acceptable
c.9 good quality
3.99 high fidelity

Table 4, Experimental relation of correlation to image quality
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Figure 4. P, vS: Number of Amplitude Bits Per Sample and

Py VS Number of Phase Bits Per Sample
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of the quantized signals. This conclusion can also be considered
as correct for the exact image correlation coefficlient & because
the transfer index K, when the number of phase bits is small, is
asymptotically independent with amplitude which is the one belng
the function of mean and variance.

It is shown that the phase carrying more information useful
for image construction than amplitude. This can be seen in Figure
4 vhich shows that P, dominates the value of P..

2
It is also shown that hard-limiting the input signals to a

phased array wvhile leaving the phase unaltered preserves much of
the 1image Iintegrity. This agrees with work by Kermish [15), Van
Hove {16} (171, Oppenheim (18], and Steinberg [5]. The result is
seen in Figure 5 on the upper portion of the Hﬁaxls (HA=0): the

correlation coefficlent . in this region is nearly 0.9 indicating

(Table 4) good image quglity. Amplitude-only information,on the
other hand, destroys the 1image. Hard limiting plus one bit of
phase information sometimes suffices (P0= 0.6). Hard limiting
plus two bits of signal phase per sample results in a correlation
coefficient of 0.8, which often results in acceptable imagery.

Figure 5 showvs that a minimum of four bits of information per
complex signal sample guarantees a relatively good image ( 20.9)
provided that three bits are used for the phase and one bit for
the amplitude. Eight bits are required to ensure a high fidelity
image ( £0.99).

Table 3 and Fiqure 5 provide a quantitative rule of thumb for
assigning data bits to phase and amplitude: When the number of
bits per data sample, HA+ H§, is no more than 8, the number of
bits assigned to phase should be two larger than the number of
bits assigned to amplitude. When H,+ H§z 10, H

A A
assignment. These rules also show that the phase information

= Hyis the optimum
thoroughly dominates the process which is again agree with the

vell known experimental results in coherent imaging (e.gq.

holography or microwave imaging).
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3. EXPERIMENTS

We have conducted 6 experiments to test the theory. The
experimental data are obtained from near-fleld tvo-dimensional
high-resolution radio camera images having 3m of range resolution
and 2-6m cross-range resolution (2]). The wavelength is 3cm. The
experiment numbers and the target descriptions are as follows:

4

301 Limerick Nuclear Power Plant

303 Cromby Powver Plant

308 Marshall Street, Reslidential Houses
309 High Street, Residential Houses

310 Potato-Chlip Factory

312 Suburban Housing Development

The targets are all in Phoenixville,PA, at distances of 4.5
to 17 km from the radio camera, vhich 1ls located at the Valley
Forge Research Center of the Unlversity of Pennsylvania. The
image correlation coefficlient obtained from the experimental data
is denoted by P vhich is obtailned by evaluation of (2.1) using
images produced by experimental data with optimum quantization
applied.

The value predicted by the theory is F=KP
by (2.%a) and (2.9b) using measured data in the aperture and K is
obtalined from Table 1.

where Po obtained

3.1 Phase Distortlion Only Experiments

In this case P=KP§ because P,=1. P, was directly calculated

from (2.9b). The comparison b:tween sz and P for the slix
experiments are shown 1in Table 5. The seventh row shows the
average of the measured correlation coefficlents of the
experimental data. In the eighth row are the predicted values.
From Table S5 one can observe that the theoretical value lis
very close to the average experimental value. This is a highly
practical result because the theoretical correlation (2.9k) was

derived wunder the assumption of uniformly distributed phase. 1In
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1

|
l
|

run 1 bit of phase 2 bits of phase Remarks
301 0.89 T 0.98
303 0.92 I 0.93
|
308 0.91 | 0.98 Experimental
oy 309 2.90 : 0.98 correlations
310 0.92 : 0.93
312 0.93 | 0.98
- —t
oy 0.91 ! 0.98 Ave. exp.correl.
- T
a-Kp.-Kp0 0.91 | 0.99 Theoretical value
|
|
N

Table 5 p Compared with p. Phase Distortion Only
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actuality, the real phase distributions, obtained by study of the
phase histograms, are not quite uniform and are distinguishably
different from scene to scene. This means that P is insensitive
to variations in the distribution of phase.

The value of 7 for the 'no phase' case turns out to be
indeterminate because (2.8), from which K is determined, become

indeterminate. It was shown experimentally in (5] that no-phase
data produce a meaningless 1image (Figure 6). It is for this
reason that this case is ignored in Table 5. ’

3.2 Amplitude Distortion Only Experiments
In this case rFr=KrP, because P§=1. The theoretical values are

A
» given in the left column of each group of data in Table 6. K was
il obtained from Table 1. PAvas calculated from (3.3) in which

A sand the a, were estimated from the individual data sets.

rm i

The second column 1is Px.

The ¢third column 1is P; + which 1is obtained from images
produced with the optimum quantizer design based on the assumption
that each distribution was Rayleigh.

Four observations can be drawn form Table 6:

1) The values of F predicted by the theory are very close to
px obtained from the images.

2) Unlike what was observed 1in the phase-distortion-only
experiment, the 1image correlations are remarkable different from
scene to scene specially when the number of amplitude bits is
~ny~0-69 while P_.=0.89, and all
of them are significantly smaller than the image correlation
obtained from Rayleigh distributed amplitude data, which |is
#=0.94). One can also see that image correlation coefficients are

small ( e.g., for hardlimiting, P

similar when their amplitude histograms are similar. (e.g.,data
sets of runs 309 and 310 and of 308 and 312.) If we define the
image polint occupancy to indicate the "mass" of the image:

& __
‘. o = T¢/ Terms (3.3)
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HA(bits)
_______ U ——
| |
0 L 1 [ 2
| 1
run D'KDA Dx D;‘ | O'KDA pX 9; ! p'KDA px D;
T T 7301 [ 0.70 0.70 0.69 | 0.80 0.81 0.84 | 0.88 0.90 0.89
] |
303 0.79 0.77 0.77 | 0.92 0.91 0.92 | 0.97 0.97 0.96
308 0.88 0.89 0.89 : 0.95 0.95 0.95 : 0.96 0.97 0.97
399 0.78 0.79 0.79 | 0.89 0.89 0.91 ; 0.93 0.95 0.95
310 0.80 0.81 0.81 : 0.92 0.99 0.91 : 0.95 0.95 0.94
312 0.85 0.86 0.86 | 0.93 0.94 0.94% | 0.96 0.97 0.96
Rayleigh | 0.95 0.94 o.9u.r 0.99 0.98 0.98-} 0.99 0.99 0.99
l |

Tadble 6. Py Compared with p. Amplitude Distortion Only. p is the
image correlation predicted dy the theory. pxand p; are the measured
correlations when the quantizer design was optimized for each measured
aperture distributfon, and for the Rayleigh distribution, respectively.
The values in the bottom row are based on simulation data having a

Rayleigh distribution.
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vhich 1is the normalized mean value of image, or more imaginally
the 1image correlation between the image and a homogeneous black
image (hardlimiting image). The results of f versus I° are
tabulated in Table 7. From Table 7, one can see that @ increases
toward the theoretical value as Io increases,

3) It 1is evident that the estimates of K from Table 1 which
are used to evaluate  in Table 6 work quite well for all scenes
although all of them have different amplitude distributions. This
means that K is nearly a scene-free parameter. ’

4) A very important observation from the comparison of Py and
P; is that the quantizer design based on the Rayleigh distribution
gives nearly 1identical performance , in almost all cases, to the
designs using the six actual distributions. This iImplies that one

gquantizer design is appropriate for all scenes.
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|

F run # q(Hardlimiting) I,
301 0.70 0.37
303 0.77 0.42
309 2.79 0.42
310 0.81 0.50
312 0.86 0.55
308 0.89 0.58

Table 7. °x vs, Image Points Occupancy
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4. DISCUSSION AND CONCLUSION

4.1 Practical Considerations

Observations drawvn from the experimental testing of the
thecry can be summarized into the following categories with
practical considerations, and twvo major aspects of the theory,
vhich are the optimum quantizer design and the estimate of image
correlation coefficient, will be examined. :

l1)Sensitivity: The qualitative analysis and numerical study
shovs that the transfer index K is insensitive to the amplitude
distribution and to the variation in phase distribution, while
Table 6 shows that P, is relatively sensitive to the changes of
amplitude distribution. The optimum guantizer design is found not
sensitive to the data distributions.

2)Generality: The theory was developed under the assumption
of a uniform distribution of phase 1in the aperture data; no
restriction vas imposed upon the amplitude distribution. Howvever,
since the variation from uniform distribution that the phase
distributions of actual data have is considered as small and both
optimum quantization conditions and estimate of £ are insensitive
to the phase variations. The theory is practlically general,

3)Scene Independence: The insensitivity of data
distributions implies nearly scene-free performance of the optimum
quantizer. The estimate of P 1Is not a scene-free quantity in
general. Howvever, if wve classify scenes into different groups
according to the nature of the scene ( e.g. industrial, residence,
field or airplane, etc) or the image points occupancy of the
scene, then, within a group, the amplitude signal can be
considered as stationary and the scene dependence of P can be
eliminated. Under this condition, the theory can be consider as
scene-free.

4) Capability of real-time processing: In many Iimage
processing situations, real-time processing 1is preferred. The
optimum design requires knowledge of the statistical properties of
the input data which, in principle, requires that data be acqulred
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and analysed. Such a process precludes real-time operation.
Hovever, the nearly scene-free performance observed in this study
allows the designer to avoid the distribution-estimation steps
and to base the design wupon assumptions of uniform phase and
Rayleigh amplitude distributions. By making these priori
assumptions regarding the data, the quantizing operation becomes
real-time.

4.2 pDistortion Analyslis ’

Knovledge about distortion so far is limited to knowing hov
much percent of the energy belongs to distortion. It is not
sufficient. In order to determine the tolerance to distortion in
the image, one has to knov how the error energy is distributed.
In other words, is it randomly and homogeneously distributed over
all place? or does it build up coherently? If false targets are
created, how do they relate to the data compression procedure and
to the original image, etc..

Some earller research on the nature of image distortion from
hardlimiting aperture data have shown that the hardlimiting
procedure does produce false targets (ghosts) (4], (131-(14). It
{s also found that the distorted image is related to the original
image by some kinds of convolution relationship [4) (15].

A complete solution to this problem is out of the scope of
thils work. However, a procedure is developed here to give some
useful guidelines to approach the solution.

By assuming that

f = l2e = Z Ale S(x - xl) (4.1)
i '
i

g = A'e = I Ale S(x - x,) (4.2)
1 i i

and letting

= X! =
K Ai/h1 , and K EH /;1

at”
ve have
jﬁi

g = % Aie S(x - xl)
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K 2
-3 Sk S _
% KALAie S(x xl)

J(Ker 1) 32
e 21 1 A,e 1é(x - xl)

= 3 K 1

1 At

= [f KAie &(x - xi)]

jﬁk .
19 Ake S(x ~ xk)]
k

(2]~ Z,)

= [% (Ai /Al) e &(x - xi)]

ES(x - xk)]

J(Z'- 2) iz
C(A* /A) e r e 1]

therefore

(4.3)

vhere

I = F(g), ha.= F(H,) and I.= F(f)

g a” £

Ig= |Ig|, If= IIfl q

One can see that the distortion process has the same form as

a linear filtering process with filter transfer function

J(E'- %) q

= (A'/A) e (4.4)

Hd 1

except that the parameters of Hd are discrete random variables.

w

Let the complex image

A
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If= f F1 é(u-ui)

vhere u, = sin(el) represents the ith plxel location in a given
range bin and F1 represent the complex pixel value at that

position . Then the complex distorted image Ig can bhe expressed
as

L}
-

= Fi é(u-ui) ] * hd

bX Fi hd(u-ui)

which shows that the distortion operation is equivalent to the
procedure that first shifts hd to every pixel location multiplied
by the pixel value at that position, and then adds them together
over the entire image field.

From here, one can immediately observe that

l) the distortion energy will be spread all over the image
plane;

2) the nature of the ghosts depends very much on the tail
structure of hd'

Therefore, as a gquideline of distribution analysis, the shade

of hd will be investigated for various case of data compression.

4.2.1 Effect of Amplitude Distortion
For amplitude distortion only, we have

= '
Hd A'/A (4.5)
For the case of no distortion, Hd= 1. The "filter" is indeed
an all-pass filter.

As the number of quantized level decrease, the fluctuation
range of Hd +iIn which 99 per cent of the data points of Hd are
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located, and the fluctuation rate (rate of changes in amplitude
from tvo adjacent elements) increase, so that more tail structures
are added to hd in the image domain according to the property of
Fourier transform (Figure 7). The probability of getting false
targets 1is therefore Increased. 1In the case of hardlimiting (0
bit of amplitude), the fluctuation range reach 1its maximum.
Because the 1large part of tall structure of hd is in small
magnitude, and because any pixel value which is lower than certain
threshold (usually -204B) will be considered as background hoise,
the major effect of amplitude distortion is to increase the noise
level as well as to decrease the dynamic range.

4.2.2 Effect of Phase Distortion
For phase distortion only, we have

Hq= exp(2' - 2)

= exp(s2) (4.6)
-y N
hd(u) = N % exp[-j(é¢1+ Yi(u))
-y N
= N z exp[-j(Ti(u))l (4.7)
i

vhere vlis the Fourier Kernel.

Equation (4.7) can be considered as a summation of unit
vectors with angle Ti'
Let us first consider tvo extreme cases:

For the case of no distortion, H;=1, h, becomes a £ function

as expected.

For the case of no-phase distortion (2'=0, 5¢i= -¢1), J’
-1 N
hd(u)= N ? exp[-j(¢1+ vy(u)) = 0

e,
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Figure 7 . Illustration of Analysis of

hd for Amplitude Distortion
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(‘.
o as N goes to infinity. all vectors are canceled out include
. broadside because -#ls so as ‘!'ls are uniformly distributed over 0
= ® = = =
to 2m for all u. It follows that Ig hd If 0 and Ig lIgI 0, which

lead to an undetermined value of . For N being finite, this
summation might not be zero. Howvever, as shown in Figure 6, it
does result 1n a meaningless image.

When more distortion 1Is introduced (the number of bits
decreases), the fluctuation range and the fluctuation rate of.the
projections of the unit vectors Hdion both the real axls and
imaginary axis increases (Figure 8). As the same consequence as
for amplitude distortion, more tail structure are added onto hd.
Therefore, the major effect due to phase distortion is basically
the same as in the case of amplitude distortion.

The above analysis provide us a roughly plcture about how the
distorted energy will distributed and give guideline for furtherx
study on the subjegt. Although the distorted image Ig is defined

is a complex quantity, the analysis
dI wvill still be very valuable to the
analysis of false targets distribution because

as the magnitude of Ig and hd

on the structure of |h

I_ = |I
g I gl

= | Fi hd(u-ui) |

=2z IFil lhd(u-ui)l .
vhich means that the result from the analysis on lhdl gives the
information upon the upper bound of the false targets
distribution. In other words, the actual result will never be
vorse than the result from the analysis.

4.3 Conclusions

Summarizing results obtained from the previous sections, wve
conclude: )

1) Image quality is measured by image correlation coefficient
P defined by (2.1). It can be expressed in the aperture domain as
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the product of the lover bound correlation coefficlent P, and the
transfer index K.

P, can be further decomposed into two Independent factor: PA,
the amplitude correlation coefficient, and P§, the phase-dependent
correlation factor. For optimum guantization, the amplitude
correlation coefficient PA is equal to the rms value of the
quantizer output level ai normalized to the rms value of the input
data, with the input ranges chosen such that the optimum
conditions of (2.6a) and (2.6b) are met. For the case of the
phase being uniformly distributed, the phase-dependent correlation

factor P is the sinc function of T / N, vhere N§ is the number of

output %evels. For Rayleigh distri%uted amplitude and uniform
distributed phase, Po 1is independent with the statistical
properties (mean or variance) of the 1image data and uniquely
related to the entropies of the quantized signals.

The ¢transfer 1index K s completely specified when the
distributions of the aperture data and the quantizer parameters
are given. Given number of quantized levels, K is insensitive to
the changes 1in the setting of output levels. It has also shown
that K 1is asymptotically independent with amplitude distribution
and insensitive to the variations of the phase distribution.
Therefore, K Is nearly a scene-free parameter.

2) The optimum quantization scheme, which maximizes F_for a
given number of output levels, consists of two independent
quantizers, an amplitude quantizer and a phase quantizer. For
each quantizer, the output level from each quantizer-established-
range is equal to the conditional mean of the input over that
range, The value of the dividing point (endpoint) between any two
quantizer-established-ranges is equal to the arithmetic mean of
the conditional means of the two adjacent ranges. These are the
twvo conditions for optimum quantization {(2.6a)-(2.6d)}. This
optimum scheme is good for an arbitrary amplitude distribution and
for a uniform phase distribution.

3) The theory of Bit Compression for microwave imaging is
developed by presenting an exact solution of the analytlc equation
of image correlation coefficient in terms of the entropy of the
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quantlized aperture data through the optimum quantization
procedure. For a given distribution of complex aperture data, the
theory determines the minimum number of bits required of the
quantized signal for the image to achieve any given quality or,
conversely, wvhat gquality of image can be obtainred for any given
numbex of bits that the quantized signal retains. It proves that
the phase information thoroughly dominates the p:ocess.. It is
shown that hard limiting the input to a phased array while leaving
the phase unaltered preserves much of the 1image integrity.
Amplitude-only information destroys it. Hard limiting plus one
bit of phase information sometimes suffices. Hard limiting plus

twvo bits of signal phase per sample often results in acceptable
imagery. A minimum of 4 bits of information per complex signal
sample guarantees a relatively good image provided that 3 bits are
used to represent the phase and 1 bit i3 used to represent the
amplitude. Eight bits are required to ensure a high fidelity
inmage,

4) The theory provides a rule of thumb for optimum bit
allocation between amplitude quantizer and phase quantizer. It
indicates that when the number of bits per data sample is no more
than 8, the number of bits assigned to phase should be two larger
than the number of bits assigned to amplitude. For finer
gquantization, equal numbers of bits should be assigned ¢to
amplitude and phase.

5) The theory Imposes substantlially no constraints upon the
distributions of amplitude and phase In the microwave data. It is
also shown that the optimum quantization design derived from the

theory s nearly scene-independent and may achieve real-time
performance.

6)Finally, the theory provides guidelines to explore the é
nature of distortion due to data compression. It is shown that
the distorted energy 1is spread all over the image plane. 1Its
major effect 1is to increase the noise level so that the dynamic
range will be decreased.

A
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